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The uniqueness of solution of mixed initial-boundary value problems for a ver- 
sion of linear viscoelasticity is proved, as is also the convergence of some appro- 
ximate methods of solving these problems. upon compliance with the conditions 

I-c > 0, “lA d Mn and if mA = “n , then h + 2~ > 0 the following cases of 

the relationship between powers of the polynomials B and C are considered: 

mB > mC + 2 (Sect. 3), mg = mc and mn = Ti%c + i (Sect. 4). These cases 
include all the types of relations between the strains and stresses of the type(l.1) 
used in the theory of viscoelasticity. As a mathematical foundation for such con& 

straints, it can be noted that for rnc > mB the Cauchy problem for a body occu- 

pying all of space is always incorrect according to G. E. Shilov [ 11. 

1. A version of linear viscoelasticity is considered with the following governing 
relationships between the stress nil and strain Eij tensors : 

C (al) Oij =,hA (3,) ehij + 2pB (at) &ij (1.1) 

&ij = l/2 (Uitj + Ujti) 

Here A (P), B (P> and C (p) are some polynomials of the variable p with the high- 
est coefficient equal to unity and the powers mA, mn = n, rnc = m - 2, respectiv- 
ely, A and p are the instantaneous elastic moduli, fj = aii is the volume strain, Ui,j 

is the partial derivative of the ith component of the displacement vector u of points 
of the body with respect to the variable Xi, dt is the partial derivative with respect to 

time t, and Sij is the Kronecker symbol ; summation is performed over the repeated 
subscripts. 

It is natural to use the principle of possible displacements in the Lagrange form 

(1.2) 

for a generalized formulation of viscoelasticitv theorv oroblems. where 6~~ is the vari- 
ation of the displacement vector components, F = (F,, Fz, $‘J are the volume forces, 

P = (PI, Pr, Ps) are forces acting on the boundary S of the volume 52 occupied 
by the body, and p is the body density. Considering the variations &, independent of 
time t, let us eliminate crij from (1.2) by applying the operator C (a,) to (1.2) and 
taking account of (1.1). If the vector function u in the equality thus obtained is a vec- 
tor of the actual displacements of the body points, then this equality must be satisfied 
at any time t and for all arbitrary possible displacements 6ui, and it hence continues 
to be satisfied if 6ur depend on time t. Let us present this equality which we have 
additionally integrated with respect to time 
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r ‘j {AA (0,) 06ij + 2pB (d,) eij} 6eij dQ dt = 
i,h 

T T 

f \ 6uiC (3,) (F* - @,‘ui) dSt dt + S \ 6~iC (8,) Pi dS dt 
a6 0: 

(1.3) 

The equality (1.3) is taken as the basis in the generalized formuiation of linear visco- 

elasticity problems below, 

For a complete formulation of the problem it is necessary to give the following ini- 
tial and boundary conditions: 

8,“~ II=O = a,, k = 0, . . . , max (n - 1, m - 1) 6.4) 
N,u Is =II N& (1.5) 

N2arlvri,!s -7 NzP = P (f.6) 
where v1 are direction cosines of the exterior normal to the surface 8, and N,, Ns are 
mutually orthogonal projection operators in the space E3 which depend piecewise-con- 
tinuousiy on the coordinates of the surface S. The assignment of displacements or stres- 

ses on the body boundary, respectively. denotes the case of identical operators fir or Na 

It is furthermore considered that there is a degenerate part S, of the boundary s where 

the operator iv1 is identical, i, e. the possibility of body displacement as a rigid whole 

is eliminated, and the operator NI f Ns is identical for all points of s. 
The following condition must be satisfied. 
Consistency condition. There exists a vector function 4i, satisfying the ini- 

tial and boundary conditions (1.4), (1.5). 

2, Let us introduce certain spaces and let us examine their properties. The spaces 

C” lo, T; HI, L, io, T; HI, W,h- (Q) are considered known [Z]. That the vector 

function belongs to any of them means that each of its components belongs to this space. 

The boundary s of the bounded volume Q possesses a normal varying piecewise- 
continuously on s and such that some cone of positive aperture can be adjoined from 
within at each point S. 

Definition 2.1. The space By*“’ (T) is the closure of the set of vector-func- 

tions a = (a,, a2, a3), a E Cm (Q x IO, Tl) in the norm 

Let us introduce the following notation: 

(aa bjH, = i W (a) 6~ -t 2yeij (a)1 eij fb) da (2.2) 

D e f i n i t ion 2.2.The closure of a subset of vector functions a E c1 (52) satisfy- 

ing the homogeneous boundary conditions (1.5) is the space Hrin the norm (2.2). 
De f i n i t i o n 2. 3. The closure of the subset of vector functions a E Cc0 (Q X 

[0, TI) satisfying the homogeneous boundary and initial conditions (1.4), (1.5) in the 

norm T 

(2.3) 
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is called the space B2” (T) if CL > 0, h -f- 21.~ > 0. The space Bz” (T) has the 
special notation Wa (T). 

Note. When S, = S, the condition h + 2y > 0 can be replaced by the wea- 

ker condition 31 -f- Zp, > 0. 
Definition 2.4, The closure of the subset of vector-functions a E Cm ($d X 

IO, Tl) satisfying the homogeneo~ boundary conditions (1.5) in the norm 

IlGfd~~ = j {(a.a)H,+)Ia,a112Lt(il)}dt (2.4) 
0 

is the space Ha( 2’). The subset Ha (T) obtained by the closure of vector functions 
which equal zero in some nelghborho~ of t = T for each function is denoted by 

N30 (V. 
Definition 2, 5. Ba” (T) is the subset of vector fuuctions a E BT* (T) such 

that 11 d@ ![L~Q, is a function bounded in [O, T] , 
Definition 2.6. The space of elements b dual to the space N- and with the 

norm 

is called the negative space H-. 
Lemma 2.1. The following imbeddings of spaces with continuous imbedd~ng 

operator hold : 
N, I= IV2’ 6% z&$ (a) C Ii,- 

Bzn (T) c B:‘“(T), BF m (T) cs Cn-’ [O, T; Wz’ (Q)] 

By, m (T) c Ck [0, T; W;-(!to*5-n) cm-n)-’ (Q)] for n 4 k < m 

B~“(T)cW,“[O, T;Wa:(I’)], Ii,(T)cW,‘(SJ x [O, T]) 

where the norm (2.2) and the norm W’al (Qd) are equivalent in the space Hi , and the 
norms (2.3) and #B,“‘” (T) in B2” (T) ; I’ E &. Here A,is the class of Liapuuov 
surfaces r, i, e. a finite number of domains rk each of which is representable parame- 

tricalfy as zk = fi (zkt yA),where fRare contiRuo~ly differentiable functions can be 
isolated on the surface I‘ , where any interior part of the surface l? belongs to the 

union of some strictly interior closed subdomains rlc for each such part. The proof 

results from Theorem 3.2 (see @I, Chapt.. 1) and the Korn inequaliry. 
Lemma 2.2. Let there be a set of m vector functions . a,, . . . , 8, with the fol- 

lowing properties : 
a;, E Wzl $4, k=O,...,n-1 

a, E W~*k*0~5-n)‘m-n)-r (a), k = ?Z, . . . , ?G? - 1, if m > E3 

In this case there exists a vector function a E BT’” (T) taking this set as the initial 

values (1.4). If the functions ak satisfy the homogeneous boundary conditions (1.5) in 
the sense of the spaces to which they belong, then the vector function a also satisfies 
the ~omogeneo~ boundary conditions (1.5). The proof results from Theorem 3.2 (see 

123. chapt* 1). 
Lemma 2.3, For any vector function 0 given on some surface PC Q , F E RI, 

sucfi that df”o E Lz i0, T; W> (I’)] k = 0, . . . , n - 1, there exists a vector 
function a f B,“‘* (T) taking the value w on I’ , where if ath’ w. = 0, k = 0, . . . . 
n - 1 for t = 0, then ,jlEa = 0 also for t = 0 and the reconstruction operator is 
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continuous. The proof is carried out analogously to [3]. 
Lemmas 2.2 and 2.3 indicate important particular cases of the existence of the vec- 

tor function @ from the consistency condition for a definite class. It must be noted that 

the representation 

is valid for a vector function a E B,“‘” (T) with initial values at8 a = 0, k = 0,. . , 

n - 1 for t = 0. 

8, Each of the three cases of the relationship between the powers of the polynomials 
B and C mentioned in Sect. 1 in connection with the singularities in the formulation 
of the problem, should be examined separately. 

Definition 3.1. The vector function. u E B:‘” (T) satisfying the initial and 

boundary conditions (X.4), (1.5) such that the equality (1.3) is valid for any vector func- 
tion 6~ 63 ff, (i”) is called the generalized solution of the linear viscoelasticity prob- 
lem in the case n = mg > mc + 2 . 

The case mA = mB is examined for definiteness. Let the vector function <D from 
the consistency condition be such that <D E_ a,"*" (T). We seek the generalized solu- 
tion of the linear viscoelasticity problem in the form 

u = ua -/- dl, (3.1) 

where the vector function uO evidently belongs to the space BE (T). By introducing the 

notation v = dfnuO and taking account of (2.5),(3. l), Eq. (1.3) can be reduced to the 

following form : T 

WU),*(,, = s {R, (v, 6~) + R, (a, F, P, 6~)) dt 
0 

(3.2) 

where R k is some integro-differential form which is linear in each of its variables. It 
must be noted that the form R, (v, 6u) contains the variable v only under the integral 
with respect to time t, with the exception of the term p (v *6u)r&-~ for me j- 2 = 
mu, which must be added to the expression for the norm H, in this case. For p > 0 
such a new norm H, is equivalent to the old one. 

It can be shown that the uniqueness of solution of (3.2) in the space Ha (T) is equi- 
valent to the existence of a single generalized solution of the linear viscoelasticity 
problem. All the properties and methods of the solution of (3.2) are easily carried over 
directly to (1.3). Therefore,(3.2) will be investigated below, and the results again for- 
mulated for (1.3). The investigation is carried out analogously in Sect. 4. 

Theorem 3.1. Let the following condition be satisfied : 

1) mr: -i_ 2 & rnB = n, mn < mg, 2) p > 0, 3) if m;% = mB, 

then h + 2p > 0, 4) if mg = mf: -f- 2, then p > 0, 5) @ f% B:‘” (T), 

6) C (a,) F E L, IO, T; If,-I, 7) C (a,) Pi EZ L&b T; W-i' (s)] 
In this case: 1) there exists a single generalized solution of the linear viscoelasticity 

problem in the sense that has been introduced by Definition 3.1 ; 2) the solution can be 

sought ap~oximately by the Bubnov-Galerkin method in the form u,* = cI (t) $i 3_ 
*a. 4 c,, (t> ‘$,, where qkis an orthonormal basis in N, and the system of equations of 
the Bubnov-Galerkin method is solvable at each step and the sequence u,* converges 
strongly to the solution of the problem in the space B:‘” (T) . 
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By estimating the members in the right side of (3.2) by using the Holder inequality, 
it is easy to see that each of these members is a linear continuous functional in the vari- 

able 6~ = cp in the space Ns (T). By the Riesz theorem on the representation of a 
continuous linear functional in Hilbert space, (3.2) can be written in the equivalent ape- 
rator form 

(V&*(r) = (G~v.~~~*(T) + (f%r,,,, 

The following iteration process is conducted 

v, = GT~+l + f 

where v,, is an arbitrary vector function, vO E H, (T). We call the corresponding 
process for (1.3) the method of “elastic solutions”. By using the Hiilder inequality, the 

characteristic term in the expression (GTv . cp)HdTj is estimated as follows : 

T t 

ISSS 
0 bo 

E (z - a} 8 (a) dq, (z) a-2 d7 j G 

ml {[ t s s a2 (4 ChdQ dtj”‘II &*(BX[O, 7-l) 
0 PO 

m,=max/E($)E)I for tE[O, Tl. 

It must be noted that 2 is arbitrary in this inequality. Summing the estimates for all 

the members of (GTV - (P)H~~), the estimate 
. , 

(3.4) 

can be obtained by selecting cp = GTv and using Lemma 2.1, where the constant m, 

depends only on t and is finite for 0 < t < T < 00. Tlte estimate 

is deduced from (3.4). from which there results that for sufficiently large k the operator 

GT~ is a compression operator. According to the principle of compressed mappings(3.3) 
is uniquely solvable. By using the estimate (3.5) the rate of convergence of the series 

vo + (VI- vo)it(vs---VI) + *** to (3.3) is found. Therefore, the following theo- 
rem is valid, from which the first part of the assertion in Theorem 3.1 follows. 

Theorem 3.2. Let all the conditions of Theorem 3.1 be satisfied. Kn this case 
the sequence of approximate solutions of the method of elastic solutions reduces to a 
single generalized solution of the linear vis~elastici~ problem u with the velocity 

Here the constant M depends only on T, and the constant R on the magnitudes of the 
corresponding norms of the external forces, the vector function 0, the initial approxi- 
mation u. E B:‘” (T), constants from the imbedding theorem; &f and K are inde- 
pendent of m. 

The system of ftb approximation equations of the Bubnov-Galerkin method in the 
terminology of (3.2) is 
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(vr* - qk)a, =Rl (Vr, 9,) + Rs (@, F, P, qk), k =I 1, . , r 

The solvability of this integro-differential system for any r is proved just as the solva- 
bility of (3.2). The estimate of the norm of the solution v,* obtained is hence inde- 

pendent of the number I”, Hence, a weakly convergent subsequence in Hs (T) can be 

selected from the sequence vTS It is easy to show that this weak limit is indeed the 
generalized solution of the problem, By virtue of the uniqueness of the solution of the 

problem the whole sequence converges weakly. Strong convergence of the sequence v,* 

in the small time segment [O, T,] follows from the fact that Gt is a compression ope- 
rator for sufficiently small 1. Now, examining the segment [T,, ZT,] and taking account 

of the properties of the operator GT and the strong convergence of v,* in the space 
J$s (T,), it can be seen that the sequence v,* converges strongly in the norm Hs (2 T,), 
etc., until the whole segment IO, T] is exhausted in a finite number of steps. 

Note 1. let @ E c” [O, T; II?,] and in tbe variable rp 

j “pit (a,> Pi ctS + f (PiC (at> Fi dQ 
61 

is a continuous operator in the space C” [O, T; HI1 in the space of continuous func- 

tions. In this case the generalized solution of the problem (from Theorem 3) lies in the 

space C” [0, T; NJ. This note results from Theorem 1 formulated in [4]. 

Note 2. In the case of the so-called quasi-static problem (obtained formally from 
(1.3) for p = 0) Theorems 3. I, 3.2 are true, where compliance with the condition 

l)lc -t-z< rrLa is optional. 

4. Let the vector function be cp E Ha” (T) , and for definiteness mA = mix* 
Then (1.3) is converted by the following two methods : 

for n = mB = m, 

Were R,, R, are linear forms in each of their variables containing atku only for 
k C n. 

Definition 4.1. The vector function u e B,“’ W’ (2”) [u E Bsn (T)] satis- 

fying the initial and boundary conditions (X.4), (1.5) and the equalities (4. I), (4.2) for 
any vector function rp E I?‘,” (T), where the TZ th initial condition is taken in the fol- 
lowing sense 

limijd,nu--aa,/lLt(,, =O for t--+0 

is called the generalized solution of the linear viscoelasticity problem in the case 

n = mE = mc [n = ml3 = mc + II . 
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Theorem 4.1. Let the following conditions be satisfied: 

1) n = Mn > mA, 2) p > 0, p > 0, 3) h + 2p > 0, if Mn = md? 

4) @ E B, nt*sni’+l (‘J’), if n = mc, 5) @ E B:I+LTnt’ (T), if II = mc f 1, 

6) dP_lC (8,) Fi E Ls (52 X [O, Tl), 7) dt”C (tit) Pi EY L, (S X II09 ‘I), 

8) k = 0, . . . , 1, 1 > 1. 

In the case n- = MC b = mc -i- 11: 1) there exists a single generalized solution 

of the linear viscoelasticity problem in the sense of the definition 4.1 ; 2) the solution 
can be found by the Bubnov-Galerkin method, where the system of equations of the Bub- 

nov-Galerkin method is uniquely solvable at each step, the sequence of approximate 
solutions of the Bubnov-Galerkin method lies in some sphere of the space By’-1s ntr(T) 
[By’-1 (T)] and converges weakly to the generalized solution of the problem u E: 

B: r1-1S n+f (T) lu cz BF’-l (T)l ; 3) if i > 2, the sequence II, then converges 
strongly in the space B:,‘-‘* ntz-l (T) [Bgt”-s (T)]. 

The proof of the theorem of the existence of the Bubnov-Galerki~ method for non- 

stationary problems was first proposed in [5J. 
The course of the proof in the case n. = mc is described briefly below. As in Sect. 3, 

the solution is sought in the form 
uu _ * (t--r-l $_& 

u=uJ+a __ 
s Jn-111 
0 

which reduces to an equivalent problem whose unique solvability involves the existence 

of a single generalized solution of the linear viscoelasticity problem, 
Equivalent problem, Find the vector function v E Eia (T) satisfying the fol- 

lowing equality T 

(v*@&(T)-i {(pa~V'a~'P)~~(~)-(~ClatV'~'L2(~)- 

(P@v’Q)La(n)W = vdt, F, P,Q + &(a, Q) dt (4.3) 

for any vector function Q E Ei (2') and v = 0 for t = 0. 
The proof of the existence of the solution of the equivalent problem is by the Bubnov- 

Galerkin method ; the r th approximation of the method 

is found from the system of equations 

(rzkN (t) + crrrlC’ it) + C&k 0) + (vr*\15E)rz, = 

113 * (t-q-1 (1 (n - I)! 
0 

(4.4) 

with the initial conditions tl,k (0) = ark’ (0) = 0, k = I,..., r. Here the $k are ele- 
ments of the basis of the space H1 such that 

P PP,*%JLI(R)= $?a 

'Ike uniqueness of solution of the system of Bubnov-Galerkin Eqs. (4.4) follows from the 
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fact that a system of ordinary differential equations of normal type with constant coef- 
ficients is obtained for the corresponding coefficients ark of the vector function 

t 

u 
or = 

s 

’ (t - q-1 v dz 

(n--l)1 r 

0 

The a priori estimate of the solution (4.4) is proved in the space H, (T), for which 

the k th equation of (4.4) is multiplied by ark’ and these equalities are then added and 
integrated with respect to the time between the limits 0 and t. A vector function is 

contained in the right sides of (4.4) only under the time integral, hence integrating by 
parts with respect to t in the equality obtained, we have 

The left side of the equality obtained is of the form 
t 

)/ atvr I&*) + Cl ( II arvr I&) & + Q 5 W%Vt)Lz(n) dz + wcf* 

0 0 

A uniform estimate for all 0 < t < T, independent of r 

Ii VT &, + II atvr 112Lz(cJ) G 15f3 (4.5) 

results from a comparison between the right and the left sides of the equality and the 
Gronwall inequality. Here the constants Mk, k = 1,2,3 depend only on the magnitudes 

of the corresponding norms a,, P, F and the length of the segment (0, 2’1. By virtue of 
the a priori estimate (4.5). a subsequence converging weakly to v,, in the space 
H,(T) can be selected from the sequence of approximations vp . The imbedding ope- 
rator H3( T) in the space L,(B) is completely continuous, hence v0 = 0 for t = 0. 

The system (4.4) reduces to the form (4.3) for which the lath equality in (4.4) is 
multiplied by dl, (t), the equalities are then added, integrated with respect to time, and 
where necessary integrated by parts with respect to time. A passage to the limit shows 
that v0 satisfies (4.3) for any function 9 of the form 

N 

q = 2 d, (t) ‘#k, d, (7’) = 0 (4.6) 
k=o 

Because the set of functions of the form (4.6) is compact in Ha0 (I’), there results that 
v0 is a solution of the equivalent problem. To prove the uniqueness of the solution, we 

set .9 

q=~(t)= v(t)dt, 
s 

X(t) =O, if t&s 
t 

in (4.3) for F = 0, P = 0, CD = 0. After elementary estimates similar to those made 
to obtain the inequality (4.5). we obtain 

8 

II x (0) II& + II v (s) II;, (i-2) G Jfa 
6 

II x (t) l&t) dt + II x (0) 11?.,(a) 

0 
1 

from which the uniqueness of the solution of the equivalent problem results. It follows 
from the uniqueness of the solution that the whole sequence of approximations vY of the 
Bubnov-Galerkin method converges weakly in H,( 2”). 



On the uniqueness of solution of linear viscoelasticity problems 491 

The reasoning relative to Eq. (4.4) differentiated I - 1 times with respect to time is 
analogous to that presented above, and terminates the proof of the second part of Theo- 
rem 4.1. The strong convergence of the subsequence of approximate solutions of the 
Bubnov-Galerkin method can be shown by proceeding from the density of a function of 
the form N 

2 Ck (Q $7 clr (t) E C” (0, T) 
k=O 

in the space B, “lm(T) n Ban (T). The case n = inc i- 1 is examined analogously : the 
problem is reduced to the equivalent problem by the substitution (3.1). A certain dif- 
ference in the investigation of the equivalent problem from that carried out above for 

n = mc is the following: firstly, to obtain the a pr i or i estimate of solutions of the 
Bubnov-Galerkin system it is necessary to multiply the k th equation of the system by 
a,.k, but IlOt by c,.k’ , and secondly, it is necessary to prove boundedness in the norm 
L, (Sz) for all 0 4 t < T for the limit element of the Bubnov-Galerkin sequence. The 
method of investigating the equivalent problem agrees completely with the correspond- 

ing method of investigating a linear parabolic equation [6]. 
Note 1. Conditions (6). (7) of Theorem 1 can be replaced by the following 

ath C (a,) F E L, LO, T; If-1 
dt” C (8,) Pi E Lt [O, T; l4’2-‘/’ (S)l 

Note 2. All the results obtained above are valid for the plane viscoelasticity prob- 
lem. 

Note 3. All the results obtained above can be extended to the case of an anisotro- 

pit body, where the coefficients of the appropriate polynomials can depend piecewise- 
continuously on the coordinates z+ and time t.. 

The author is grateful to I, I. Vorovich for attention to and aid in the research. 
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